Received: 4 September 2017

Revised: 4 December 2017

Accepted: 11 December 2017

DOI: 10.1002/ece3.3778

ORIGINAL RESEARCH

Wl LEY Ecology and Evolution

Multiscale landscape genomic models to detect signatures of
selection in the alpine plant Biscutella laevigata

Kevin Leempoel®

!Laboratory of Geographic Information
Systems (LASIG), School of Civil and
Environmental Engineering (ENAC), Ecole
Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

2Laboratory of Evolutionary Botany, University
of Neuchatel, Neuchatel, Switzerland

SInstitute of Plant Sciences, University of
Bern, Bern, Switzerland

Correspondence

Kevin Leempoel, Laboratory of Geographic
Information Systems (LASIG), School of Civil
and Environmental Engineering (ENAC), Ecole
Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland.

Email: k.leempoel@gmail.com

Funding information

Velux Stiftung, Grant/Award Number: Project
705

1 | INTRODUCTION

| Christian Parisod®?

| Céline Geiser? | Stéphane Joost?

Abstract

Plant species are known to adapt locally to their environment, particularly in moun-
tainous areas where conditions can vary drastically over short distances. The climate
of such landscapes being largely influenced by topography, using fine-scale models to
evaluate environmental heterogeneity may help detecting adaptation to micro-
habitats. Here, we applied a multiscale landscape genomic approach to detect evi-
dence of local adaptation in the alpine plant Biscutella laevigata. The two gene pools
identified, experiencing limited gene flow along a 1-km ridge, were different in regard
to several habitat features derived from a very high resolution (VHR) digital elevation
model (DEM). A correlative approach detected signatures of selection along environ-
mental gradients such as altitude, wind exposure, and solar radiation, indicating adap-
tive pressures likely driven by fine-scale topography. Using a large panel of
DEM-derived variables as ecologically relevant proxies, our results highlighted the
critical role of spatial resolution. These high-resolution multiscale variables indeed in-
dicate that the robustness of associations between genetic loci and environmental
features depends on spatial parameters that are poorly documented. We argue that
the scale issue is critical in landscape genomics and that multiscale ecological variables
are key to improve our understanding of local adaptation in highly heterogeneous

landscapes.
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rarely been identified, mainly because the ecological conditions acting

on individual plants are difficult to characterize.

Sessile plants have been shown to locally adapt to their environment
(Linhart & Grant, 1996). The high heterogeneity of environmental con-
ditions being considered as the principal trigger of local adaptation
in face of homogenizing gene flow, fine-scale genetic differentiation
has commonly been interpreted as a result of strong selection pres-
sures across natural landscapes (Gonzalo-Turpin & Hazard, 2009;
Gray et al., 2014; Parisod & Christin, 2008; Vekemans & Hardy, 2004).
Preponderant abiotic factors driving such adaptation have, however,

Mountainous areas are ideal to study high genetic differentiation
and local adaptation at a fine scale (Parisod & Bonvin, 2008; Stocklin,
Kuss, & Pluess, 2009). These habitats are indeed highly heterogeneous,
and topography plays a considerable role in local climatic variability
(Wilson & Gallant, 2000). Until recently, existing climatic datasets
were, however, too coarse to account for environmental heterogene-
ity at fine scales. Furthermore, in situ measurements were too labor in-

tensive and subject to several experimental biases, hampering proper
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investigation of local adaptation in alpine plants. The recent availability
of very high resolution (VHR) digital elevation models (DEMs) (<1 m)
has made it possible to effectively approximate ecologically mean-
ingful variables with limited fieldwork, offering the type of fine-scale
environmental data that are required to assess both the scale of adap-
tive patterns and the underlying factors in heterogeneous landscapes
(Leempoel et al., 2015). DEM-derived variables such as temperature,
soil moisture, or solar radiation are easy to compute and have the po-
tential to be widely used as proxies in ecology and evolution (Kozak,
Graham, & Wiens, 2008; Leempoel et al., 2015; Wilson & Gallant,
2000). However, such topographic variables have rarely been used in
landscape genetics and need to be further evaluated (Leempoel et al.,
2017).

It is intuitively expected that the higher resolution of a DEM is
likely to produce more accurate results, although it appears that a high
amount of details may blur the output signal (Cavazzi, Corstanje, Mayr,
Hannam, & Fealy, 2013). Studies in geomorphology have indeed shown
that the relationship between DEM variables and physical character-
istics of the terrain could only be valid at a specific spatial resolution
(Kalbermatten, Van De Ville, Turberg, Tuia, & Joost, 2012; Wilson &
Gallant, 2000). In contrast, research in landscape ecology has rarely
considered the influence of the spatial resolution of environmental
data. The relevance of topographic variables in species distribution
models has been regularly reported (Le Roux, Virtanen, & Luoto, 2013;
Lefsky, Cohen, Parker, & Harding, 2002; Randin, Vuissoz, Liston, Vittoz,
& Guisan, 2009). However, some studies showed substantial improve-
ment of models attributed to finer environmental variables (Camathias,
Bergamini, Kichler, Stofer, & Baltensweiler, 2013), whereas others
found limited differences (Pradervand, Dubuis, Pellissier, Guisan, &
Randin, 2014). Noticeably, DEM-derived variables have rarely been
used in Gene-Environment Associations and, to our knowledge, the
spatial resolution has never been considered as an influencing param-
eter, which likely leads to incomplete conclusions on local adaptation
(Manel, Poncet, Legendre, Gugerli, & Holderegger, 2010; Parisod &
Joost, 2010; Storfer, Murphy, Spear, Holderegger, & Waits, 2010).

In this study, we explored the population structure of the alpine
plant Biscutella laevigata and performed correlations between local en-
vironmental data and genetic variation. To do so, we used 233 polymor-
phic AFLP markers and 13 VHR DEM-derived variables, demonstrated
as relevant environmental proxies (Leempoel et al., 2015). Our aims
were to (i) detect fine-scale population structure, (ii) evaluate to what
extent DEM-derived proxies of environmental features are powerful
to detect signatures of selection, (iii) assess the impact of their spatial
resolution on the detection of signatures of selection. Taking advantage
of very high resolution, we thus here appraise and discuss the scale

dependency of microhabitat modeling and of signatures of selection.

2 | MATERIAL AND METHODS

2.1 | Sampling

Biscutella laevigata is a widespread polyploid Brassicaceae spe-
cies that occurs mostly as small patches across the European Alps

(Parisod & Besnard, 2007). This strictly outcrossing, perennial plant
has its pollen dispersed by generalist Diptera and Lepidoptera, while
seeds disperse through gravity and possibly wind (Parisod & Bonvin,
2008).

The study zone is situated at “les Rochers-de-Naye” (N46°26'00",
E6°58'50"), where a natural hybrid zone between closely related
B. laevigata lineages has been documented along a 1.2-km-long
ridge at an elevation included between 1,864 and 2,043 m above
sea level (Parisod & Christin, 2008). Across the whole populated
area, 361 individuals of B. laevigata were selected using a random
cluster sampling strategy to represent the spatial distribution of the
population. Selected areas of 4 x 4 m, separated by random dis-
tances of O to 25 m, were subdivided in four 2 x 2 m plots that were
sampled when at least five individual plants were present. If less
than five individuals were found in any of the four plots, a new area,
at least 25 m further along the ridge, was selected. All individuals
where georeferenced using a differential GPS offering a horizontal
accuracy of ¢. 2-3 cm and a vertical accuracy of c. 3-4 cm. Their
leaves were immediately dried in silica gel for extraction of genomic
DNA following a standard DNeasy plant extraction mini kit protocol

from Qiagen AG, Switzerland.

2.2 | AFLP genotyping, scoring, and error estimation

All individuals were genotyped with amplified fragment length poly-
morphisms (AFLPs) following Parisod and Christin (2008). Despite
limitations inherent to their dominant nature, AFLP loci are widely
distributed across the genome and support appropriate genotyping
that is hardly outperformed by current high-throughput approaches
in polyploids (Mason, 2015). In short, genomic DNA was digested with
EcoRl and Msel before ligation of adaptors to perform preselective and
selective amplifications. PCR products amplified with FAM, VIC, NED
fluorescent dye on the EcoRI primers were pooled with GeneScan
500 LIZ Size ladder and separated the 3730xI DNA analyzer capillary
sequencer (Applied Biosystems). Resulting electropherograms were
scored between 75 and 500 bp with GENEMAPPER v. 4.0 (Applied
Biosystems) using AFLP default peak detection parameters. The scor-
ing was checked manually, and AFLP loci were recorded as present (1)
or absent (0) in binary matrices.

After an initial assessment of polymorphism and reproducibility
of 38 AFLP primer combinations, the six bests (MCAG/EATC, EAGG/
MCGG, MCAG/EAAT, EACT/MCAC, MCGA/EATA, and MCGG/EATA)
were retained for genotyping. Individuals were randomly distributed
among plates and the whole procedure was replicated on 15% of the
samples to evaluate the error rate sensu Bonin, Taberlet, Miaud, and
Pompanon (2006).

2.3 | Population structure and gene flow

An issue regularly encountered when studying patterns of genetic
variation and local adaptation in plant populations is recent poly-
ploidy (Meyers & Levin, 2006). As polyploid populations strongly
violate Hardy-Weinberg expectations, most standard methods in
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population genetics cannot be applied (Ronfort, Jenczewski, Bataillon,
& Rousset, 1998). Furthermore, inferential frameworks accounting for
the evolutionary genetics of polyploids must rely on accurate data-
sets assessing dosage of the multiple alleles at each locus, which still
is technically challenging with high-throughput genotyping (Mason,
2015). Accordingly, approaches deprived from population genetics
pre-requisites should currently be privileged among the applicable
methods to evaluate local adaptation from genetic data. Under such
circumstances, the population structure can profitably be described
using, for example, the K-mean clustering or principal component
analysis, whereas the detection of signatures of selection can be
achieved using generalized regressions or mixed models (Parisod &
Joost, 2010).

Unbiased inference of population genetic structure was here
assessed using K-means clustering, a data partitioning method im-
plemented in the R package Vegan (Dixon, 2003), with the Calinski
criterion (Calinski & Harabasz, 2007) to select the most likely num-
ber of genetic clusters (Gompert, Lucas, Fordyce, Forister, & Nice,
2010). Accordingly, individual AFLP genotypes were assigned to their
genetic cluster using the fuzzy c-means algorithm (Dunn, 1974) im-
plemented in the package “e1071” in R (Meyer, Dimitriadou, Hornik,
Leisch, & Weingessel, 2014) with fuzzification parameter optimized at
1.02. Such a genomic cline approach was successfully used to dissect
gene flow between polyploid taxa across natural hybrid zones (e.g.,
Senerchia et al., 2016). After a maximum of 1,000,000 iterations, the
outputs of 1,000 independent runs of this algorithm were combined
in CLUMPP (Jakobsson & Rosenberg, 2007) using the Greedy search
method and 10,000 repeats of random input order. The coefficient
of membership to a cluster was provided by CLUMPP as the mean of
the independent runs. Such an individual coefficient can be consid-
ered as an admixture score estimated without biological assumptions.
Accordingly, individuals were considered as belonging to population A
and population B when their coefficient of membership was below 0.2
and above 0.8, respectively. Individuals with intermediate scores were
considered as admixed.

Spatial genetic structure was quantified using SPAGeDi (Hardy &
Vekemans, 2002), which measures the pairwise relatedness between
individuals at increasing distance intervals. The mean relationship
coefficient among loci was computed within 20 balanced intervals
(i.e., with the same number of pairwise comparisons in each interval),
and its significance was assessed with 9,999 permutations between
individuals.

2.4 | Environmental variables

The acquisition of the VHR DEM used in this study is described into
details in Leempoel et al. (2015). Briefly, a LIDAR point cloud was ob-
tained over the study area (helicopter) and transformed into a DEM
with a resolution of 0.5 m. The following 13 variables were then de-
rived from this DEM using SAGA GIS (Conrad et al., 2015): northness
(Cosine of Aspect, Nor), eastness (Sine of Aspect, Eas), slope, vector
ruggedness measure (VRM) (Sappington, Longshore, & Thompson,
2007), total solar radiation in June and December (Ti6, Ti12) (Bchner
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& Antoni¢, 2009), positive and negative topographic openness (TOP
and TON) (Yokoyama, Shirasawa, & Pike, 2002), sky view factor (SVF)
(Hantzschel, Goldberg, & Bernhofer, 2005), wetness index (SWI)
(Beven & Kirkby, 1979), flow path length (FPL) (O’Callaghan & Mark,
1984), and wind exposure index (WEX) (Conrad et al., 2015). VRM is
a measure for the unevenness of terrain and distinguishes between
rocky vs. smooth terrain. TOP and TON express the protection of a
focal point from the surrounding relief. It is based on the maximum
angle found at zenith (TOP) or at nadir (TON) from the point, over a
defined radius. SVF expresses the ratio of the radiation received by a
planar surface over the radiation emitted by the entire hemispheric
environment. SWI is the logarithm of the ratio between the catchment
area and the tangent of slope and quantifies the topographic control
of hydrological processes. FPL calculates the upstream or down-
stream distance along the flow path for each sample. More details can
be found in Leempoel et al. (2015).

In order to account for the variability of DEM-derived variables
due to spatial resolution in association models, each variable was com-
puted at 0.5-, 1-, 2-, 4-, and 8-m resolution by downgrading the original
VHR DEM at coarser resolutions using a B-spline filter (Kalbermatten
et al.,, 2012), implemented in MATLAB (MATLAB Version 12b. Natick,
MA, USA: The MathWorks Inc., 2010).

The values of the different DEM-derived variables were compared
between the three groups corresponding to populations A, B, and ad-
mixed individuals (see Results) with Kruskal-Wallis tests performed in
R.

2.5 | Detection of outlier loci

Association models between the presence of genetic markers and
the value of DEM-derived variables were processed using gener-
alized linear mixed models (GLMMs) (Bolker et al., 2009; Zuur,
leno, Walker, Saveliev, & Smith, 2009), which are advantageously
independent of any genetic model. GLMMs are used in Gene-
Environment Associations studies to account for pseudo-replication
due to population structure among samples. In our case, we con-
sidered the pixel (i.e., each unit of the DEM grid) to be the random
effect instead of the sampling plot or the genetic subpopulation. In
fact, with DEMs at different resolutions, individuals often fall within
the same pixel (i.e., should be considered as pseudo-replicates) and
we therefore used pixels’ IDs as the random parameter at each spa-
tial resolution. The coarser the resolution, the more samples are lo-
cated in the same pixel. Hence, samples are present in 295 pixels
at a resolution of 0.5 m, 227 at 1 m, 140 at 2 m, 99 at 4 m, and 66
at 8 m. GLMMs were performed using the R package Ime4 (Bates
& Maechler, 2009) between each polymorphic marker and DEM
variables using a binomial link function. Significance of all associa-
tions was assessed with a log-likelihood ratio test, and AICs were
compared between a model with a variable and a constant model.
In addition to these variables, GLMM models were also performed
with measured altitude (Alt), longitude (X), latitude (Y), as well as
membership coefficient to population A. In these cases, the plot was
considered as the random effect.
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FIGURE 1 Population structure of the studied individuals. (a) Coefficients of membership to Population A obtained from C-mean clustering
are shown in (a) for each individual along the ridge. A semi-circle was added to facilitate the visualization of the coefficients. (b) The Calinski
Criterion values for the K-mean clustering from 2 to 20 populations indicate that the most likely number of populations is 2. Finally, (c) shows
the sorted membership coefficient to Population A and the standard error for each individual over the 1,000 iterations of the C-means
clustering, combined in Clumpp
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for AFLP markers in Biscutella laevigata. Pairwise
relationships are calculated for 20 intervals of
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distances and are shown in black when significant
(p-value <.05/20) and in white otherwise

3 | RESULTS

3.1 | Population structure and gene flow

Genotyping of the 361 individuals of B. laevigata yielded 233 poly-
morphic AFLP loci (frequency of minor variant >0.05) with an error
rate estimated at 2.93% based on the replication of 15% samples.
Clustering approaches evaluated the genetic structure based on
individual genotypes, with the Calinsky criterion of the K-means
method highlighting two main genetic clusters within the study area
(Figure 1b). Accordingly, C-means clustering was performed for K = 2
over 1,000 iterations that were then assembled in Clumpp (Average
pairwise similarity among replicates is 0.81). A majority of the indi-
viduals were unambiguously assigned to each of these genetically
homogeneous clusters, whereas 105 admixed genotypes presented
coefficients of membership between 0.2 and 0.8 (Figure 1c). Standard
deviation over 1,000 runs was also relatively high for most of these
admixed individuals.

The spatial distribution of these genetic clusters (i.e., popu-
lations) showed a clear segregation (Figure 1a). Genotypes with
membership higher than 0.8 (i.e., population A; 107 individuals)
were mostly located on the upper part of the ridge, separated from
population B (i.e., genotypes with membership lower than 0.2; 149
individuals) by a rocky area with very few individuals. Admixed indi-
viduals were reported across the whole area, with a slight bias to-
ward the zone where population B is located. Despite such evidence
of long-range gene dispersal across habitats in this 1.2-km-long
population, gene flow appeared consistently limited. Pairwise ge-
netic relationship among individuals indeed declined considerably
at short distances, after the second distance class (i.e., 7 m), and
reached nonsignificant values from the fourth distance class (i.e.,

after only 66 m) (Figure 2).

7 33 66 94121 159191219 258 301

1
352 389 434469 527 582 640 719

Mean distance (m)

820 968

3.2 | Habitat comparison

All DEM-derived variables, except TON, were found to be signifi-
cantly different between populations (Table 1). For instance, popula-
tion A was found to be located at a higher altitude than Population
B. Population A was also more exposed to wind (WEX), presented a
lower protection from surrounding relief (i.e., higher openness, TOP),
a higher sky view proportion (SVF), and higher Terrain ruggedness
(VRM) than population B. Interestingly, population A receives less
solar radiation than B in December, but more in June. Regarding hy-
drology, individuals from population A were reported on significantly
shorter flow path lengths (FPL) but showed higher soil wetness (SWI).
Nevertheless, it is worth noting that some variables were only differ-
ent among populations at particular resolutions. For example, Eas was
significantly higher in Pop A than in Pop B at resolutions of 0.5, 1, 2, 4,
and 8 m, while VRM was only higher in Pop A at 0.5 m.

3.3 | Detection of outliers

Few GLMMs between genetic loci and environmental variables turned
out to be significant with a = 0.05 after Bonferroni’s correction (sig-
nificance level: 3.3E-06). Only five genetic markers were significantly
associated with Alt, TON, Nor, Ti12, and WEX (Table 2). The spatial
resolution of DEM-derived variables, however, had a strong influence
on the significance of associations. Indeed, these associations were
only significant at a specific resolution. Although characterization of
fine-scale environmental heterogeneity appeared crucial, the highest
resolution did not necessarily imply the highest significance. For ex-
ample, the association between the locus c1v382 and Ti12 or Nor
was only significant at 1 m and poorer at other resolutions (Figure 3).
The two other associations, that is, c1v222 with TON and c1b136
with WEX, are only significant at the highest resolution but the former
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TABLE 1 Comparison of DEM-derived variables between habitats

Variable Habitat A Habitat B Habitat admixed Pvalue AB Significant resolutions
Alt 1,994 (+33) 1,955 (+32) 1,964 (+37) 1.92E-27

Nor -0.39 (+0.43) -0.57 (+0.48) -0.48 (+0.44) 3.70E-10 05,1

Eas -0.05 (+0.65) 0.4 (+0.52) 0.31(+0.62) 1.54E-08 0.5,1,4,8
Slo 34.661 (+18.751) 44.28 (+16.963) 47.564 (£17.793) 1.46E-05 8

VRM 0.082 (+0.046) 0.068 (+0.053) 0.068 (+0.05) 9.96E-05 0.5

TOP 1.472 (+0.1) 1.411 (+0.08) 1.434 (+0.101) 1.08E-06 1

WEX 1.268 (+0.023) 1.257 (+0.021) 1.257 (+0.024) 1.21E-06 0.5,1,2
SVF 0.8 (+0.1) 0.8 (+0.1) 0.7 (+0.1) 3.12E-06 1,8

Ti6 206.099 (£59.745) 169.79 (+70.372) 162.939 (+64.248) 4.07E-05 8

Ti12 74.7 (£20.776) 86.121 (+21.817) 80.085 (+21.162) 4.38E-10 05,1,8
FPL 27.29 (£37.08) 41.6 (+39.08) 41.55 (+42.04) 7.02E-06 4

SWI 4.9 (+0.7) 4.5 (+0.7) 4.4 (x0.7) 2.18E-05 8

Variables showing a significant difference between individuals of populations A, B and admixed ones are shown in the table. The mean and the standard
deviation are given for each habitat. The following column provides the p-value for the most significant Kruskal-Wallis test performed between Habitat A
and B, and the final column indicates the resolutions at which the test was significant (<0.05 after Bonferroni’s correction for multiple tests), that is, the
variable in question is significantly different between the two populations at the spatial resolution indicated. Variables acronyms: altitude (Alt), northness
(Nor), eastness (Eas), slope (Slo), vector rudggedness measure (VRM), positive topographic openness (TOP), wind exposure index (WEX), sky view factor
(SVF), total insolation in June (Tié), total insolation in December (Ti12), flow path length (FPL), SAGA wetness index (SWI). Pixel resolution is expressed in
meters. DEM, digital elevation model

TABLE 2 Significant GLMM models as measured with the log-likelihood ratio

Markers frequencies

Likelihood AIC constant AIC variable
Marker  Variable Resolution ratio p-value po gl model model Pop A Pop B admixed
clv492  Alt 7.24E-16 -9.16 -0.45 453.4 390.3 0.25 0.36 0.37
clv222 TON 0.5 1.16E-14 -9.10 -0.47 469.9 412.3 0.31 0.42 0.38
c1v382 Nor 2.75E-07 -0.19 0.72 4941 469.6 0.51 0.44 0.42
clv382  Til12 1 3.75E-07 -0.20 -0.71 494.1 470.2 0.51 0.44 0.42
c1b376  Alt 5.91E-07 -1.89 1.12 358.3 335.4 0.33 0.15 0.18
c1b136  WEX 0.5 1.85E-06 -0.53 5.61 491.4 470.7 0.51 0.45 0.50

p-Value, regression coefficients (80 and f1), and AICs are provided for each model as well as the frequency of the genetic markers in each population. Both
the AIC of the constant model and the AIC of the model including the variable are provided. Variables acronyms: altitude (Alt), negative topographic open-
ness (TON), northness (Nor), total insolation in December (Ti12), wind exposure index (WEX). Pixel resolution is expressed in meters. GLMM, generalized

linear mixed model

decreases more sharply at 1 m (see Appendix 1). Noticeably, none of
the 233 loci were significantly associated with latitude, longitude, and
membership coefficient to population A.

4 | DISCUSSION

The fine-scale environmental heterogeneity of mountainous regions
makes such landscapes ideal for the study of patterns of local adapta-
tion. In this research, we report evidence of local differentiation and

signatures of selection in an alpine plant population of B. laevigata. We
indeed evidenced a marked spatial genetic structure along a 1.2-km
ridge on which two coherent gene pools were identified, separated
by an unsuitable rocky area (Figure 1a). Consistent with a neutral pat-
tern under restricted gene flow, genetic similarity between neighbor-
ing individuals declined abruptly and appeared nonsignificant after
64 m only. This result exhibits a particularly high isolation-by-distance
in the continuously sampled population over the studied ridge.
However, admixed individuals were highlighted all over the studied
area, indicating that homogenizing gene flow is likely at work across

FIGURE 3 Variation of the significance of association models between genetic marker c1v382 and northness for different spatial resolutions.
The distribution of the marker along the ridge is shown in a). The background represents the aspect computed at a resolution of 1 m. (b) shows
the significance of GLMM with increasing resolution (i.e., pixel size of the DEM in meters), represented by the log10 of the p-value of the log-
likelihood ratio. The horizontal bar is the significance threshold of 0.05 after Bonferroni’s correction
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the population. The habitat of individuals genetically assigned to these
two populations showed substantial differences in local topographic
conditions and we further report signatures of selection on specific
loci due to local environmental factors. Those results are consistent
with the mosaic distribution of subalpine and alpine lineages reported
along a regular transect at this ridge (Parisod & Christin, 2008). Among
the five genetic markers here strongly associated with DEM variables,
one candidate adaptive locus was associated with solar radiation in
December and northness and is thus further congruent with prior re-
sults suggesting selection by solar radiation (i.e., degree-days during
the growing season and total solar radiation) as evidenced by Parisod
and Joost (2010).

Those results do not unambiguously support local adaptation as
the unoccupied rocky area may act as a strong barrier limiting gene
flow. Consequently, it is not unlikely that genetic drift acted on both
populations independently and that the influence of the clear habitat
demarcation was not the major driver of the reported genetic differ-
entiation. Accordingly, we found only a limited number of significant
associations, despite the substantial number of environmental vari-
ables tested and the high number of individuals sampled. In contrast to
predictions of such neutral model ruled by demography, the reported
pattern also matched with expectations under weak selection, with
the spatial distribution of significant associations along environmen-
tal gradients only weakly reflecting the population structure, and thus
making them plausible signatures of selection. The observation that
none of the identified genetic markers is correlated with the popula-
tion membership coefficient is further consistent with adaptive pro-
cesses having shaped the distribution of slightly more than 2% of the
loci being surveyed.

Bearing limitations of the approach in mind, our observations
demonstrate that VHR DEMs can be suitably used to model fine-
scale environmental heterogeneity. Among investigated topographic
variables, solar radiation, terrain ruggedness, and wind exposure ap-
pear to substantially differ between the two populations. Noticeably,
they reflect climatic variability at microsite that is only identified by
fine-scale topographic models, demonstrating their usefulness for
landscape genomics studies requiring such resolution (Leempoel
et al., 2015; Manel et al., 2010; Pradervand et al., 2014). Most im-
portantly, the DEM-derived variables used here were shown to be
surrogates for relevant ecological features, including temperature
and snow cover variability in mountainous areas (Bohner & Antonié,
2009; Leempoel et al., 2015; Lehning, Griinewald, & Schirmer, 2011;
Wilson & Gallant, 2000). Accordingly, we show here that a large panel
of variables exist and can likely be expanded to refine environmental
characterization for many organisms. For instance, vector rugged-
ness measure (VRM) appeared to be the most important predictor
of soil moisture on the ridge (Leempoel et al., 2015). High-resolution
VRM thus appears as a suitable proxy for the distribution of stony
areas and more generally soils with different porosities. Exposure to
wind was also noticeable in habitat comparisons and in association
models. As it indirectly affects snow accumulation (Plattner, Braun,
& Brenning, 2004) and thus the timing of snow removal in alpine
habitats, which we observed to be correspondingly heterogeneous

over the study site (pers. obs.), wind exposure represents a useful
proxy for gathering insights on the start of the growing season or
exposure to cold during the harsh season. In addition, altitude has
an important role as two markers identified of six were associated
with this variable only. Clearly, it remains among the most important
parameter influencing temperature at any scale in mountainous re-
gions (Leempoel et al., 2015; Wilson & Gallant, 2000).

Multiscale models used here enabled precise analyses, thanks to
ecologically relevant topographic proxies (Leempoel et al., 2015). For
both habitat comparisons and association models, we report a high
sensitivity to spatial resolutions and a generally decreased strength
of GLMM models at coarser resolutions, which were mostly nonsig-
nificant. It appears that DEM-derived variables computed at a sin-
gle resolution, particularly at coarse ones, do not fully represent the
topographic control on ecologically relevant variables, and are not
able to replicate at best the spatial continuum naturally constituting
landscapes. Noticeably, associations between genetic markers and dif-
ferent environmental variables did not generally converge toward an
optimal resolution, indicating that the suitable resolution depends on
the type of DEM-derived variable considered (Leempoel et al., 2015).

Our framework illustrates that ecologically relevant DEM-derived
proxies are relatively easy to acquire and provide unique information
on micro-habitats for landscape genomics studies. However, we also
highlight their sensitivity to changes in spatial resolution and argue that
the interpretation of results obtained from DEMs at a single resolution
should be cautiously considered. By no means, a single resolution,
even the finest, may be sufficient to identify signatures of selection
in highly heterogeneous landscapes. Accordingly, recommending an
appropriate scale would likely be misleading and we rather suggest
that future studies be based on high-resolution models to explore mul-
tiscale derived variables, as we did in this study. While we focused on
a single species, we expect these recommendations to be valid for a
broad range of taxa and habitats. On the other hand, coarse resolution
climatic variables interpolated over homogeneous landscapes may be
sufficient for specific situations (Fick & Hijmans, 2017) that are un-
likely to benefit from a multiscale approach.
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